Fatores que influenciam a aceitação da Internet das Coisas entre estudantes universitários no Iraque
Uma aplicação do modelo UTAUT estendido
DOI:
https://doi.org/10.22567/rep.v14i2.1077Palavras-chave:
internet das coisas , UTAUT , intenção comportamental , expectativa de desempenho , expectativa de esforço, condições facilitadoras , confiançaResumo
Este estudo investiga os fatores que influenciam a aceitação e o uso das tecnologias da Internet das Coisas (IoT) entre estudantes matriculados em universidades privadas no Iraque. O modelo da Teoria Unificada de Aceitação e Uso da Tecnologia (UTAUT) é utilizado como estrutura teórica para esta pesquisa. O estudo examina seis fatores principais, incluindo: expectativa de desempenho, expectativa de esforço, influência social, condições facilitadoras, privacidade percebida e confiança. Um total de 386 estudantes de seis universidades privadas em Bagdá, Iraque, participaram da coleta de dados. O software Smart PLS foi utilizado para testar as hipóteses. Os resultados revelaram que a privacidade percebida, a expectativa de desempenho e a influência social são os preditores mais significativos tanto da intenção comportamental quanto do uso real da IoT. Por outro lado, fatores como expectativa de esforço, condições facilitadoras e confiança não apresentaram impacto significativo, indicando que, uma vez que as preocupações básicas com a privacidade sejam abordadas e a utilidade percebida da IoT esteja clara, os estudantes são menos influenciados pela facilidade de uso ou pelo suporte institucional. Os resultados sugerem que as autoridades universitárias devem priorizar essas áreas, que têm o potencial de aprimorar os resultados educacionais por meio do uso de tecnologias inteligentes e interconectadas.
Referências
Alamri, M. M., Almaiah, M. A., & Al-Rahmi, W. (2023). Students’ acceptance of Internet of Things (IoT) applications in higher education: Extending the UTAUT model. Education and Information Technologies, 28(3), 4115-4133.
Al-Emran, M., & Granić, A. (2022). Technology acceptance in higher education: A systematic review of empirical studies (2011–2021). Computers & Education, 182, 104463.
Al-Kaabi, K., Al-Ani, A., & Al-Khattabi, A. (2023). IoT adoption barriers in Middle Eastern universities: A case study of Iraq and Jordan. Journal of Technology in Society, 73, 102231.
Almaiah, M. A., & Al-Khasawneh, A. (2022). Investigating students’ intention to use IoT-based learning in the Middle East: An extension of the UTAUT model. Interactive Learning Environments, 30(12), 2378-2401.
Almetere, E. S., Kelana, B. W. Y., & Mansor, N. N. A. (2020). Using UTAUT model to determine factors affecting internet of things acceptance in public universities. International Journal of Academic Research in Business and Social Sciences, 10(2), 142-150. https://doi.org/10.6007/IJARBSS/v10-i2/6915
Al-Rahmi, A.M.; Shamsuddin, A.; Alismaiel, O.A. (2020). Unified theory of acceptance and use of technology (UTAUT) Theory: The Factors Affecting Students’ Academic Performance in Higher Education. Psychol. Educ. J. 57, 2839-2848.
Alyoussef, I. Y., & Al-Rahmi, W. M. (2022). Big data analytics adoption via lenses of Technology Acceptance Model: empirical study of higher education. Entrepreneurship and Sustainability Issues, 9(3), 399. https://doi.org/10.9770/jesi.2022.9.3(24)
Arfi, W. B., Nasr, I. B., Kondrateva, G., & Hikkerova, L. (2021). The role of trust in intention to use the IoT in eHealth: Application of the modified UTAUT in a consumer context. Technological Forecasting and Social Change, 167, 120688. https://doi.org/10.1016/j.techfore.2021.120688
Ayaz, A., & Yanartaş, M. (2020). An analysis on the unified theory of acceptance and use of technology theory (UTAUT): Acceptance of electronic document management system (EDMS). Computers in Human Behavior Reports, 2, 100032. https://doi.org/10.1016/j.chbr.2020.100032
Aytekin, A., Özköse, H., & Ayaz, A. (2022). Unified theory of acceptance and use of technology (UTAUT) in mobile learning adoption: Systematic literature review and bibliometric analysis. COLLNET Journal of Scientometrics and Information Management, 16(1), 75-116. https://doi.org/10.1177/21582440241229570
Azeez, S. S., Glood, S. H., & Alhasnawi, M. K. L. (2023). Extending the technology acceptance model to understand the use of e-learning during COVID-19 pandemic for enhancing learning process: Iraqi universities' students. International Journal of Learning Technology, 18(1), 44-78. https://doi.org/10.1504/IJLT.2023.131311
Bargmann, C., Thiele, L., & Kauffeld, S. (2022). Motivation matters: Predicting students’ career decidedness and intention to drop out after the first year in higher education. Higher Education, 83(2), 1-17. https://doi.org/10.1007/s10734-021-00707-6
Camilleri, M. A. (2024). Factors affecting performance expectancy and intentions to use ChatGPT: Using SmartPLS to advance an information technology acceptance framework. Technological Forecasting and Social Change, 201, 123247. https://doi.org/10.1016/j.techfore.2024.123247
Chatterjee, S. (2022). Antecedents of behavioral intention impacting human behavior to use IoT-enabled devices: An empirical investigation. International Journal of Technology and Human Interaction, 18(1), 1-19. https://doi.org/10.4018/IJTHI.300284
Cheryl, B. K., & Ng, B. K. (2022). Protecting the unprotected consumer data in internet of things: Current scenario of data governance in Malaysia. Sustainability, 14(16), 9893. https://doi.org/10.3390/su14169893
Data Reportal. (2024). Digital 2024: Iraq. https://datareportal.com/reports/digital-2024-iraq
Faqih, K. M. (2022). Investigating the adoption of an innovation using an extended UTAUT Model: The case of mobile learning technology. Journal of Theoretical and Applied Information Technology, 100(17), 5600-5631.
Fedorko, I., Bačik, R., & Gavurova, B. (2021). Effort expectancy and social influence factors as main determinants of performance expectancy using electronic banking. Banks and Bank Systems, 16(2), 27. http://dx.doi.org/10.21511/bbs.16(2).2021.03
Fitria, T. N., & Simbolon, N. E. (2023, December). Internet of Things (IoT) in Education: Opportunities and Challenges. In Prosiding Seminar Nasional & Call for Paper STIE AAS (Vol. 6, No. 1).
Glazer, F. S. (Ed.). (2023). Blended learning: Across the disciplines, across the academy. Taylor & Francis.
Hair Jr, J. F., Howard, M. C., & Nitzl, C. (2020). Assessing measurement model quality in PLS-SEM using confirmatory composite analysis. Journal of business research, 109, 101-110. https://doi.org/10.1016/j.jbusres.2019.11.069
Hair, J. F., & Alamer, A. (2022). Partial Least Squares Structural Equation Modeling (PLS-SEM) in social sciences: Contemporary applications. Springer.
Hair, J., & Alamer, A. (2022). Partial Least Squares Structural Equation Modeling (PLS-SEM) in second language and education research: Guidelines using an applied example. Research Methods in Applied Linguistics, 1(3), 100027. https://doi.org/10.1016/j.rmal.2022.100027
Jaspers, E. D., & Pearson, E. (2022). Consumers’ acceptance of domestic Internet-of-Things: The role of trust and privacy concerns. Journal of Business Research, 142, 255-265.
Kock, N. (2015). Common method bias in PLS-SEM: A full collinearity assessment approach. International Journal of e-Collaboration, 11(4), 1-10. https://doi.org/10.4018/ijec.2015100101
Kusmulyono, M. S., Dhewanto, W., & Famiola, M. (2023). Energizing Higher Education Sustainability through Rural-Community Development Activation. Sustainability, 15(3), 2222. https://doi.org/10.3390/su15032222
Lin, H. C., Ho, C. F., & Yang, H. (2022). Understanding adoption of artificial intelligence-enabled language e-learning system: An empirical study of UTAUT model. International Journal of Mobile Learning and Organization, 16(1), 74-94. https://doi.org/10.1504/IJMLO.2022.119966
Madni, S. H. H., Ali, J., Husnain, H. A., Masum, M. H., Mustafa, S., Shuja, J., ... & Hosseini, S. (2022). Factors influencing the adoption of IoT for E-learning in higher educational institutes in developing countries. Frontiers in Psychology, 13, 915596. https://doi.org/10.3389/fpsyg.2022.915596
Maki, P. L. (2023). Assessing for learning: Building a sustainable commitment across the institution. Routledge.
Massoudi, A. H. & Fatah, S. J. (2024). Deceptive Point-of-Sale Marketing Tactics Impact on Consumer Purchase Intentions with an Attitude as a Mediator. Inquietud Empresarial, 24(2), 1-23. https://doi.org/ 10.19053/uptc.01211048.1744
Massoudi, A. H. (2023). Curbing the Plague of Nepotism by Improving Job Performance. UKH Journal of Social Sciences, 7(1), 8-19. https://doi.org/10.25079/ukhjss.v7n1y2023.pp8-19
Massoudi, A. H., & Zaidan, M. N. (2025). The mediating role of green innovation between ethics, culture, and green practices. Revista Pensamento Contemporâneo em Administração, 19(2), 43-57. https://doi.org/10.12712/rpca.v.192.68084
Ming, W., T., Wing Lee, S., & Xu, J. (2022). How do Facilitating Conditions Influence Student-to-Student Interaction within an Online Learning Platform. A New Typology of the Serial Mediation Model. Educ. Sci, 12, 337. https://doi.org/10.3390/educsci12050337
Mubarak, M. F., & Petraite, M. (2020). Industry 4.0 technologies, digital trust and technological orientation: What matters in open innovation? Technological Forecasting and Social Change, 161, 120332. https://doi.org/10.1016/j.techfore.2020.120332
Nassar, A. A., Othman, K., & Nizah, M. A. B. M. (2019). The impact of the social influence on ICT adoption: Behavioral intention as mediator and age as moderator. International Journal of Academic Research in Business and Social Sciences, 9(11), 963-978. https://doi.org/10.6007/IJARBSS/v9-i11/6620
Nazemi Bidgoli, A., Mohamadi Turkmani, E., & Irani, H. R. (2023). Investigating the Effect of Social Influence and Gender on the Willingness to use IOT Technology in Sports: From Consumer Perspective. Research in Sport Management and Marketing, 4(4), 28-41. https://doi.org/10.22098/rsmm.2023.12612.1217
Okoye, K., Daruich, S. D. N., Castaño, R., Escamilla, J., & Hosseini, S. (2024). Analyzing the impact of digitized-education toward the future of education: A comparative study based on students’ evaluation of teaching data. Studies in Educational Evaluation, 82, 101359.
Papadopoulos, K., Koustriava, E., Isaraj, L., Chronopoulou, E., Manganello, F., & Molina-Carmona, R. (2024). Assistive Technology for Higher Education Students with Disabilities: A Qualitative Research. Digital, 4(2), 501-511. https://doi.org/10.3390/digital4020025
Ronaghi, M. H., & Forouharfar, A. (2020). A contextualized study of the usage of the Internet of things (IoTs) in smart farming in a typical Middle Eastern country within the context of Unified Theory of Acceptance and Use of Technology model (UTAUT). Technology in Society, 63, 101415. https://doi.org/10.1016/j.techsoc.2020.101415
Sabol, M., Hair, J., Cepeda, G., Roldán, J. L., & Chong, A. Y. L. (2023). PLS-SEM in information systems: seizing the opportunity and marching ahead full speed to adopt methodological updates. Industrial Management & Data Systems, 123(12), 2997-3017. https://doi.org/10.1108/IMDS-07-2023-0429
Saeed, M. K., Shah, A. M., Mahmood, K., Ul Hassan, M., Khan, J. A. H. A. N. G. I. R., & Nawaz, B. A. B. A. R. (2021). Usage of internet of things (iot) technology in the higher education sector. Journal of Engineering Science and Technology, 16(5), 4181-4191.
Salifu, I., Arthur, F., Arkorful, V., Abam Nortey, S., & Solomon Osei-Yaw, R. (2024). Economics students’ behavioural intention and usage of ChatGPT in higher education: A hybrid structural equation modelling-artificial neural network approach. Cogent Social Sciences, 10(1), 2300177. https://doi.org/10.1080/23311886.2023.2300177
Schukat, S., & Heise, H. (2021). Towards an understanding of the behavioral intentions and actual use of smart products among German farmers. Sustainability, 13(12), 6666. https://doi.org/10.3390/su13126666
Schuster, F., & Habibipour, A. (2024). Users’ privacy and security concerns that affect IoT adoption in the home domain. International Journal of Human Computer Interaction, 40(7), 1632-1643. https://doi.org/10.1080/10447318.2022.2147302
Shatta, D. N., & Shayo, F. (2021). The influence of performance expectancy on e-procurement adoption model in developing countries: Tanzanians perception. ITEGAM-JETIA, 7(29), 4-12. http://orcid.org/0000-0003-1852-6070
Shin, D. H. (2022). Perceived privacy and trust in the IoT environment: A cross-cultural analysis. Information Systems Frontiers, 24(1), 115-130.
Simpson, A. L. (2022). Pursuing perceptions: exploring ease of use, usefulness, relevance, self-efficacy, and past experiences to describe influences on elementary teachers’ acceptance of digital game-based materials. [Doctoral dissertation, University of South Carolina]. United States.
Trivedi, S. K., Patra, P., Srivastava, P. R., Kumar, A., & Ye, F. (2022). Exploring factors affecting users' behavioral intention to adopt digital technologies: The mediating effect of social influence. IEEE Transactions on Engineering Management, 71, 13814-13826. https://doi.org/10.1109/TEM.2022.3182361
Tsourela, M., & Nerantzaki, D. M. (2020). An internet of things (Iot) acceptance model. assessing consumer’s behavior toward iot products and applications. Future Internet, 12(11), 191. https://doi.org/10.3390/fi12110191
Tűrkeș, M. C., Căpușneanu, S., Topor, D. I., Staraș, A. I., Hint, M. Ș., & Stoenica, L. F. (2020). Motivations for the use of IoT solutions by company managers in the digital age: A Romanian case. Applied Sciences, 10(19), 6905. https://doi.org/10.3390/app10196905
Vidal-Silva, C., Sánchez-Ortiz, A., Serrano-Malebrán, J., Arriagada, V., Flores, M., Godoy, M. & Vargas, C. (2024). Social influence, performance expectancy, and price value as determinants of telemedicine services acceptance in Chile. Heliyon, 10(5), e27067. https://doi.org/10.1016/j.heliyon.2024.e27067
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478. https://doi.org/10.2307/30036540
Virmani, N., Sharma, S., Kumar, A., & Luthra, S. (2023). Adoption of industry 4.0 evidence in emerging economy: Behavioral reasoning theory perspective. Technological Forecasting and Social Change, 188, https://doi.org/122317. 10.1016/j.techfore.2023.122317
Zaidan, M. & Massoudi, A. (2025). The Impact of Technological and Economic Factors on Cybersecurity Management and MSEM Performance. Internext, International Business and Management Review, 20(3), e847. https://doi.org/10.18568/internext.v20i3.847
Zeebaree, M., Agoyi, M., & Aqel, M. (2022). Sustainable adoption of E-government from the UTAUT perspective. Sustainability, 14(9), 5370. https://doi.org/10.3390/su14095370
Zhang, T., Tao, D., Qu, X., Zhang, X., Zeng, J., Zhu, H., & Zhu, H. (2020). Automated vehicle acceptance in China: Social influence and initial trust are key determinants. Transportation research part C: emerging technologies, 112, 220-233.
Zhang, X. Y., & Lee, S. Y. (2023). Research on users' behavioral intention to adopt Internet of Things (IoT) technology in the logistics industry: the case of Cainiao Logistics Network. Journal of International Logistics and Trade, 21(1), 41-60. https://doi.org/10.1108/JILT-11-2022-0067
Zhou, T., Lu, Y., & Li, M. (2023). Re-examining trust in IoT adoption: The mediating role of perceived privacy and usefulness. Telematics and Informatics, 80, 101987.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 REVISTA ENIAC PESQUISA

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.




